



# 2014 HSC Assessment 1

## **Year 12 Mathematics**

#### **General Instructions:**

- Date of task Tuesday 18<sup>th</sup> November (Period 6)
- Working time 45 mins
- Weighting 15%
- Board-approved calculators may be used.
- Start each question in a new booklet.
- Show all relevant mathematical reasoning and/or calculations.

#### Total marks - 30

#### Outcomes to be assessed:

- **P6** Relates the derivative of a function to the slope of its graph.
- P7 Determines the derivative of a function through routine application of the rule of differentiation.
- P8 Understands and uses the language and notation of calculus.
- **H6** Uses the derivative to determine the features of the graph of a function.
- H7 Uses the features of a graph to deduce information about the derivative.

## Section A (4 marks)

Multiple choice, answer on the multiple choice answer sheet provided.

1) What is the equation of the directrix of the parabola  $y^2 = -12x$ ?

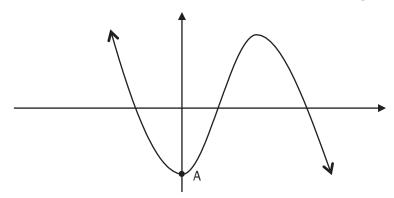
(A) x = -3

(C) y = -3

(B) x = 3

(D) y = 3

2) At the point A on the function shown below which of the following is true?



- (A) f'(x) < 0, f''(x) < 0
- (C) f'(x) = 0, f''(x) = 0
- (B) f'(x) = 0, f''(x) > 0
- (D) f'(x) = 0, f''(x) < 0

3) Which of the following is the second derivative of  $\frac{1}{\sqrt{x}}$  ?

 $(A) \qquad -\frac{1}{2\sqrt{x^3}}$ 

(C)  $\frac{3}{4}\sqrt{x^5}$ 

 $(B) \qquad -\frac{3}{4\sqrt{x^5}}$ 

(D)  $\frac{3}{4\sqrt{x^5}}$ 

4) For what values of x is the curve  $f(x) = 2x^3 + x^2$  concave down?

(A)  $x < -\frac{1}{6}$ 

(C) x < -6

(B)  $x > -\frac{1}{6}$ 

(D) x > -6

### Section B (13 marks)

Answer in a new booklet.

1) If the quadratic equation  $2x^2-3x+4=0$  has the roots  $\alpha$  and  $\beta$  , find

(i) 
$$\alpha eta$$
 (1 mark)

(ii) 
$$\alpha + \beta$$
 (1 mark)

(iii) 
$$4\alpha^2\beta + 4\alpha\beta^2$$
 (2 marks)

2) Find 
$$A$$
 and  $B$  given that  $x^2 + x \equiv A(x^2 - 3x) + Bx$ . (2 marks)

- 3) Consider the quadratic equation  $(k+3)x^2 + 4x + k = 0$ .
  - (i) Show that the discriminant is  $16-12k-4k^2$  (1 mark)
  - (ii) Find the value(s) of k for which the equation  $(k+3)x^2+4x+k=0$  has real roots. (2 marks)
- 4) A and B are the points (1, 4) and (-3, 2) respectively. The point P(x, y) moves such that PA is perpendicular to PB.
  - (i) Show that the equation of the locus of P is the circle  $x^2 + 2x + y^2 6y + 5 = 0 \tag{2 marks}$
  - (ii) Find the radius and centre of this circle. (2 marks)

(End of section B)

## Section C (13 marks)

Answer in a new booklet.

- 1) Find the first derivative of  $f(x) = x(5x-1)^4$ , giving your answer in its factorised form. (2 marks)
- 2) For the parabola  $(x+2)^2 = -6y + 24$ , find the
  - (i) coordinates of the vertex (1 mark)
  - (ii) coordinates of the focus (1 mark)
- 3) Consider the curve given by  $y = 3x^2 x^3 + 9x 2$ .
  - (i) Find the co-ordinates of the stationary points and determine their nature. (3 marks)

(0 .....)

- (ii) Determine the co-ordinates of any point(s) of inflexion. (2 marks)
- (iii) Sketch the graph of  $y = 3x^2 x^3 + 9x 2$ , clearly indicating its stationary points, inflexion point(s) and *y*-intercept. (2 marks)
- 4) The line 5x+2y+14=0 forms a focal chord of the parabola  $(y-3)^2=-4a(x+2)$ . By using the focus, find a, the focal length of the parabola. (2 marks)

(End of section C)

|  |  | 5 | Stud | ent | Nun | nber |
|--|--|---|------|-----|-----|------|

## Multiple Choice Answer Sheet - Mathematics

Completely fill the response oval representing the most correct answer.

## Year 12 Mathematics Assessment Task 1 Solutions and Marking Criteria

# Section A

| Q. | Solution                            | Marking criteria          |
|----|-------------------------------------|---------------------------|
| 1  | x=3 : B                             | 1 mark for correct answer |
| 2  | f'(x) = 0, f''(x) > 0 :: B          | 1 mark for correct answer |
| 3  | $y = x^{-\frac{1}{2}}$              | 1 mark for correct answer |
|    | $y' = -\frac{1}{2}x^{-\frac{3}{2}}$ |                           |
|    | $y'' = \frac{3}{4}x^{-\frac{5}{2}}$ |                           |
|    | $=\frac{3}{4\sqrt{x^5}} :: D$       |                           |
| 4  | $f'(x) = 6x^2 + 2x$                 | 1 mark for correct answer |
|    | f''(x) = 12x + 2                    |                           |
|    | 12x + 2 > 0                         |                           |
|    | 12x > -2                            |                           |
|    | $x > -\frac{1}{6} \therefore A$     |                           |

### **Section B**

|       | CCION D                                                          |                                  |  |  |  |  |
|-------|------------------------------------------------------------------|----------------------------------|--|--|--|--|
| Q.    | Solution                                                         | Marking criteria                 |  |  |  |  |
| 1     | c 4                                                              | 1 mark for correct answer        |  |  |  |  |
| (i)   | $\alpha\beta = \frac{c}{a} = \frac{4}{2}$                        |                                  |  |  |  |  |
|       |                                                                  |                                  |  |  |  |  |
|       | = 2                                                              |                                  |  |  |  |  |
| (ii)  | $\alpha + \beta = -\frac{b}{a} = -\frac{-3}{2}$                  | 1 mark for correct answer        |  |  |  |  |
|       | $\alpha + \rho == -\frac{\pi}{2}$                                |                                  |  |  |  |  |
|       | <i>u z</i>                                                       |                                  |  |  |  |  |
|       | $=\frac{3}{}$                                                    |                                  |  |  |  |  |
|       | 2                                                                |                                  |  |  |  |  |
| (iii) | $4\alpha^2\beta + 4\alpha\beta^2 = 4\alpha\beta(\alpha + \beta)$ | 1 mark for correct factorisation |  |  |  |  |
|       | $(\alpha, \beta, \alpha, \alpha, \beta)$                         |                                  |  |  |  |  |
|       | $=(4\times2)\times\frac{3}{2}$                                   | 1 mark for correct answer        |  |  |  |  |
|       | $-(4 \wedge 2) \wedge \frac{\pi}{2}$                             |                                  |  |  |  |  |
|       | =12                                                              |                                  |  |  |  |  |
| 2     |                                                                  | 1 mark for $A = 1$               |  |  |  |  |
|       | $A\left(x^2-3x\right)+Bx$                                        |                                  |  |  |  |  |
|       | $=Ax^2-3Ax+Bx$                                                   | 1 mark for $B=4$                 |  |  |  |  |
|       | $=Ax^2+(B-3A)x$                                                  |                                  |  |  |  |  |
|       | $\therefore A = 1$                                               |                                  |  |  |  |  |
|       | $\therefore B-3A=1$                                              |                                  |  |  |  |  |
|       | B - 3 = 1                                                        |                                  |  |  |  |  |
|       | B=4                                                              |                                  |  |  |  |  |

| 3<br>(i) | $\Delta = b^2 - 4ac$ $= 4^2 - 4 \times (k+3) \times k$ $= 16 - 4k(k+3)$           | 1 mark for correctly showing the discriminant               |
|----------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|
|          | $=16-4k^2-12k$                                                                    |                                                             |
| (ii)     | $=16-12k-4k^2$ $\Delta \ge 0$                                                     | 1 mark for $16 - 12k - 4k^2 \ge 0$ or                       |
|          | $16 - 12k - 4k^2 \ge 0$                                                           | equivalent = 12/0 / 1/2 = 0 = 0                             |
|          | $4 - 3k - k^2 \ge 0$                                                              | 1 mark of solution follows                                  |
|          | $k^2 + 3k - 4 \le 0$                                                              |                                                             |
|          | $(k+4)(k-1) \le 0$                                                                |                                                             |
|          | $\therefore -4 \le k \le 1$                                                       |                                                             |
| 4<br>(i) | $\therefore -4 \le k \le 1$ $m_{PA} = \frac{y-4}{x-1},  m_{PB} = \frac{y-2}{x+3}$ | 1 mark for $\frac{y-4}{x-1} \times \frac{y-2}{x+3} = -1$ or |
|          | $m_{PA} \times m_{PB} = -1$                                                       | equivalent                                                  |
|          | $\frac{y-4}{x-1} \times \frac{y-2}{x+3} = -1$                                     | 1 mark for showing the correct equation of the circle       |
|          | (y-4)(y-2) = -(x-1)(x+3)                                                          |                                                             |
|          | $y^2 - 6y + 8 = -(x^2 + 2x - 3)$                                                  |                                                             |
|          | $y^2 - 6y + 8 = -x^2 - 2x + 3$                                                    |                                                             |
|          | $\therefore x^2 - 2x + y^2 - 6y + 5 = 0$                                          |                                                             |
| (ii)     | $(x+1)^2 + (y-3)^2 = -5+1+9$                                                      | 1 mark for centre                                           |
|          | = 5                                                                               | 1 mark for radius                                           |
|          | Centre $(-1, 3)$                                                                  |                                                             |
|          | Radius $\sqrt{5}$ units                                                           |                                                             |

## **Section C**

| Q.       | Solution                                                    | Marking criteria                                                  |
|----------|-------------------------------------------------------------|-------------------------------------------------------------------|
| 1        | $f'(x) = x \times [4(5x-1)^3 \times 5] + 1 \times (5x-1)^4$ | 1 mark for correct application of the product rule and chain rule |
|          | $= 20x(5x-1)^3 + (5x-1)^4$                                  | 1 mark for correct factorisation                                  |
|          | $= (5x-1)^3 (20x + 5x - 1)$                                 |                                                                   |
|          | $= (5x - 1)^3 (25x - 1)$                                    |                                                                   |
| 2<br>(i) | $(x+2)^2 = -6y + 24$ $(x+2)^2 = -6(y-4)$                    | 1 mark for correct answer                                         |
|          | $(x+2)^2 = -6(y-4)$                                         |                                                                   |
|          | vertex is at $(-2,4)$                                       |                                                                   |
| (ii)     | $a = \frac{6}{4} = \frac{3}{2}$                             | 1 mark if focus follows using $a = \frac{3}{2}$                   |
|          | focus is at $\left(-2, \frac{5}{2}\right)$                  |                                                                   |

| 3<br>(i) | y'= | 6 <i>x</i> – | $-3x^2$ | + | 9 |
|----------|-----|--------------|---------|---|---|
|----------|-----|--------------|---------|---|---|

$$y'' = -6x + 6$$

Stationary points when y' = 0

$$-3x^2 + 6x + 9 = 0$$

$$3x^2 - 6x - 9 = 0$$

$$x^2 - 2x - 3 = 0$$

$$(x-3)(x+1) = 0$$

$$\therefore x = 3 \text{ or } x = -1$$

When 
$$x = 3$$
,  $y'' = -6 \times 3 + 6 = -12$ 

 $\therefore$  curve is concave down at x = 3

When 
$$x = -1$$
,  $y'' = -6 \times -1 + 6 = 12$ 

 $\therefore$  curve is concave up at x = -1

When 
$$x = 3$$
,  $y = 25$ 

When 
$$x = -1$$
,  $y = -7$ 

: local minimum turning point at (-1,-7) local maximum turning point at (3,25)

1 mark for correct *x* values of stationary points

1 mark for correctly determining the nature of the stationary points

1 mark for correctly stating the co-ordinates of the stationary points

(ii)

$$Let y'' = 0$$
$$-6x + 6 = 0$$

$$-6x = -6$$

$$x = 1$$

Possible point of inflexion at x = 1

Testing, let  $\varepsilon = 0.1$ 

At 
$$x + \varepsilon$$
,  $y'' < 0$ 

$$x - \varepsilon$$
,  $y'' > 0$ 

.. point of inflexion exists

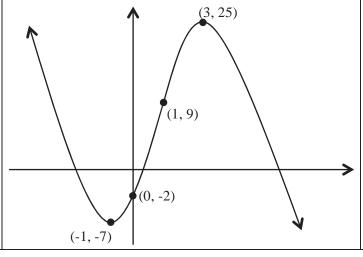
At 
$$x = 1$$
,  $y = 9$ 

 $\therefore$  point of inflexion at (1,9)

1 mark for correct co-ordinates of point of inflexion

1 mark for checking for concavity change and hence concluding point of inflexion occurs





1 mark for correct shape of curve indicating the stationary points

1 mark for labelling inflexion point and *y*-intercept

| 4 | Vertex $(-2, 3)$<br>Focus $(x, 3)$       | 1 mark for identifying the <i>y</i> value of the focus |
|---|------------------------------------------|--------------------------------------------------------|
|   | When $y = 3$ ,                           | 1 mark for finding the focal length                    |
|   | 5x + 6 + 14 = 0                          |                                                        |
|   | 5x = -40                                 |                                                        |
|   | x = -4                                   |                                                        |
|   | $\therefore$ focus is at $(-4,3)$        |                                                        |
|   | $\therefore$ focal length, $a = 2$ units |                                                        |